The space of call price functions has a natural noncommutative semigroup structure with an involution. A basic example is the Black--Scholes call price surface, from which an interesting inequality for Black--Scholes implied volatility is derived. The binary operation is compatible with the convex order, and therefore a one-parameter sub-semigroup can be identified with a peacock. It is shown that each such one-parameter semigroup corresponds to a unique log-concave probability density, providing a family of tractable call price surface parametrisations in the spirit of the Gatheral--Jacquier SVI surface. The key observation is an isomorphism linking an initial call price curve to the lift-zonoid of the terminal price of the underlying asset.
↧