We prove the global existence of an incomplete, continuous-time finite-agent Radner equilibrium in which exponential agents optimize their expected utility over both running consumption and terminal wealth. The market consists of a traded annuity, and, along with unspanned income, the market is incomplete. Set in a Brownian framework, the income is driven by a multidimensional diffusion, and, in particular, includes mean-reverting dynamics.
read more...↧