A fundamental problem in technological studies is how to measure the evolution of technology. The literature has suggested several approaches to measuring the level of technology (or state-of-the-art) and changes in technology. However, the measurement of technological advances and technological evolution is often a complex and elusive topic in science. The study here starts by establishing a conceptual framework of technological evolution based on the theory of technological parasitism, in broad analogy with biology. Then, the measurement of the evolution of technology is modelled in terms of morphological changes within complex systems considering the interaction between a host technology and its subsystems of technology. The coefficient of evolutionary growth of the model here indicates the grade and type of the evolutionary route of a technology. This coefficient is quantified in real instances using historical data of farm tractor, freight locomotive and electricity generation technology in steam-powered plants and internal-combustion plants. Overall, then, it seems that the approach here is appropriate in grasping the typology of evolution of complex systems of technology and in predicting which technologies are likeliest to evolve rapidly.
↧